

# **CONTOIL®**

# Счетчик жидкого топлива

# Применение

- Измерение расхода минеральных масел, таких как топливо и горючее
- На горелках, судах, наземных транспортных средствах и стационарных установках
- Разрешения морских и метрологических ведомств для моделей разных типов (опция)





# Отличительные черты

- Полный ассортимент для оптимальных решений при измерении расхода топлива
- Современная конструкция с электронным счетным механизмом, индикатором расхода, аналоговым и цифровым выходами сигнала и датчиком предельного значения
- Монтаж на стороне напора или всасывания, без прямых участков входа и выхода
- Не зависят от вязкости и температуры
- Высокая устойчивость к вибрациям
- Классическое исполнение с механической инликацией

### Выгода для клиентов

- Надежное решение, все в одном
- Надежный контроль работы установок и удобное управление ими. Упрощение настройки горелок и оптимизация расхода топлива
- Высокое удобство монтажа, минимальная потребность в площади
- Точные данные измерений
- Максимум надежности при работе на кораблях и сухопутном транспорте
- Выгодный по стоимости измерительный прибор

# Правильный прибор для любых требований

# VZF 15 ...50





# **Ассортимент CONTOIL® Classic** VZO 4 ...50





# Accopтимент CONTOIL® Control С многофункциональной индикацией и установкой выходных параметров

Электронная индикация:

- Счетчик количества, общий и со сбросом
- Расход на данный момент
- Другие параметры расхода

#### Выходные сигналы:

- Количественные импульсы
- Расход на данный момент
- Предельные величины ( $Q_{\text{мин}} Q_{\text{макс}}$ )

Простое обслуживание Ввод параметров с помощью меню Внешнее питание

Корпус с резьбовым или фланцевым соединениями

Наиболее важные параметры:

- Диапазон измерения расхода 10 ... 30 000 л/ч
- Диапазон температур до 130° и 180° С
- Номинальное давление PN 16 и 25 бар (PN40 по запросу)

Страница 5

#### С указанием количества и дистанционной передачей данных

Индикация количества на роликовом счетном механизме

Опция: герконовый импульсный датчик RE или RV для дистанционной тотализации данных

Опция: индуктивный импульсный датчик IN для управления

Корпус с резьбовым или фланцевым соединением

Наиболее важные параметры:

- Диапазон измерения расхода 0,5 ... 30 000 л/ч
- Диапазон температур 60, 130 и 180° С
- Номинальное давление PN 16,25 и 40 бар

Страница 9

# Accopтимент CONTOIL® VZFA / VZOA



# Оптимальное решение для специального применения, как, например:

- Дифференциальное измерение (VZFA / VZOA 15...50)
- С допуском/калибровкой для взаимных расчетов (VZOA 4...50)
- Испытательные стенды (VZFA / VZOA 15...50)

#### **VZFA**

Электронная индикация:

- Счетчик количества, общий или со сбросом
- Расход на данный момент
- Другие параметры расхода

Выходные сигналы для:

- объемных импульсов
- расхода на данный момент
- предельных значений (Q<sub>мин</sub> Q<sub>макс</sub>)

Простое обслуживание Ввод параметров с помощью меню Наружное питание

#### **VZOA 4 и 8**

Индикация количества с роликовым счетным механизмом



#### VZOA 15...50

Индикация количества с роликовым счетным механизмом

Опцион: индуктивный импульсный датчик IN для управления

Опцион: импульсный датчик с герконом RV для дистанционного обобщения данных, включенный в роликовый счетный механизм

Корпус с резьбовым или фланцевым соединением

Наиболее важные параметры:

- Диапазон измерения расхода 10 ... 30 000 л/ч
- Диапазон температур до 130 и 180° С
- Номинальное давление до PN 16 и 25 бар (PN40 по запросу)

Со специальной парой для минимальных колебаний измеряемых значений

Страница 17

#### Принадлежности

Страница 22

#### приложение:

Данные счетчиков Страница 23
Выбор правильного измерительного прибора Страница 30
Измеряемое вещество минеральное масло Страница 31
Как добиться самых оптимальных измерений и дистанционной оценки? Страница 32
Примеры применения Страница 36



При необходимости получения приборов для применения во взрывоопасных зонах обращайтесь, пожалуйста, непосредственно к нам за дальнейшей информацией.

# **CONTOIL®**, наиболее широко распространенный во всем мире прибор для измерения расхода жидкого топлива.

Ведущие фирмы-изготовители жидкотопливных горелок и люди, эксплуатирующие обогревательные установки, корабельные или дизельные двигатели делают ставку на счетчики жидкого топлива  $\mathsf{CONTOIL}^{\$}$  - и для этого есть свои уважительные причины.

# Преимущества счетчиков жидкого топлива $\mathsf{CONTOIL}^{\$}$ - ваша польза

Определите для себя сами, что является для вас самым важным из большого количества преимуществ:

- Оптимальное решение при любом виде использования
- Простая настройка горелки с индикацией расхода (тип VZF)
- Простое определение расхода и контроль с помощью переключателя предельных величин  $Q_{\text{мин}}$   $Q_{\text{макс}}$  (тип VZF)
- Возможность ручной дозировки со сбрасываемым счетчиком количества (тип VZF)
- Монтаж со стороны напора или всасывания
- Экономия места при монтаже, так как нет прямых участков входа и выхода
- Удобный монтаж измерительного прибора в горизонтальном, вертикальном или наклонном положении
- Точные результаты измерений, так как не зависят от температуры и вязкости вещества
- Минимальные затраты при отказе работы установки благодаря элементарному контролю функций, быстрый анализ дефектов и простой ремонт на месте.

#### Области применения

- Измерение расхода топлива на жидкотопливных горелках (например, в отопительных котлах, промышленных печах, установках для подготовки дегтя, в бойлерах на кораблях)
- Измерение расхода топлива в двигателях (например, дизельных локомотивов, строительных машин, судов или групп аварийной подачи энергии, тепловых электростанций)
- Контроль расхода жидкого топлива и его оптимизация
- Измерение расхода минеральных масел
- Возможность дистанционной оценки и интеграции в вышестоящие системы
- Ручная дозировка / заполнение
- Измерение расхода машинных и моторных масел
- Испытательные стенды для двигателей

#### Измеряемые вещества (подробности см. в таблице на стр. 31)

- Жидкое топливо экстралегкое / легкое, среднее, тяжелое
- Нефть
- Бункер С
- Дизельное горючее
- Бензин
  - и другие ГСМ

# CONTOIL® CONTROL VZF 15...50

# Технические данные <sup>1)</sup>



- Индикация общего количества, сброс количества, расход на данный момент, единицы  ${\rm m}^3$ , литры, галлоны США  $^{2)}$
- Удобный ввод параметров с помощью меню
- Счетчик топлива с резьбовым или фланцевым соединениями
- Для горизонтального или вертикального монтажа

#### Модели по запросу:

• Другие отверстия фланцев, например, ANSI, JIS

| Тип                                         |                       |                                      | VZF15                                                                       | VZF 20       | VZF 25       | VZF 40      | VZF 50 |
|---------------------------------------------|-----------------------|--------------------------------------|-----------------------------------------------------------------------------|--------------|--------------|-------------|--------|
| Номинальный диаметр                         | DN                    | MM                                   | 15                                                                          | 20           | 25           | 40          | 50     |
| •                                           |                       | дюйм                                 | 1/2                                                                         | 3/4          | 1            | 1 1/2       | 2      |
| Монтажная длина                             |                       | MM                                   | 165                                                                         | 165          | 190          | 300         | 350    |
| Ном. давление с резьбой                     | PN                    | бар                                  | 16                                                                          | 16           | 16           | 16          | 16     |
| с фланцем                                   |                       |                                      | 25                                                                          | 25           | 25           | 25          | 25     |
| Макс. температура                           | Т макс.<br>Q макс.    | º C                                  | 130, 180                                                                    |              |              |             |        |
| Макс. расход                                | Q <sub>макс.</sub> 3) | л/ч                                  | 600                                                                         | 1 500        | 3 000        | 9 000       | 30 000 |
| Длительный расход                           | $Q_n^{(3)}$           | л/ч                                  | 400                                                                         | 1000         | 2000         | 6000        | 20000  |
| Минимальный расход                          | $Q_{\text{мин}}$      | л/ч                                  | 10                                                                          | 30           | 75           | 225         | 750    |
| Начало срабатывания (прибл.)                |                       | л/ч                                  | 4                                                                           | 12           | 30           | 90          | 300    |
| Макс. погрешность измерения                 |                       |                                      | ± 1% от ф                                                                   | актического  | значения     |             |        |
| Цикличность                                 |                       |                                      | ± 0,2%                                                                      |              |              |             |        |
| Размер ячейки сетки фильтра                 |                       | MM                                   | 0,400                                                                       | 0,400        | 0,400        | 0,800       | 0,800  |
| Размер ячейки фильтра-                      | макс.                 | MM                                   | 0,250                                                                       | 0,400        | 0,400        | 0,600       | 0,600  |
| грязевика                                   |                       |                                      |                                                                             |              |              |             |        |
| Объем измерительной камеры                  |                       | <b>≈</b> c <sub>M</sub> <sup>3</sup> | 12                                                                          | 36           | 100          | 330         | 1200   |
| Поверхность корпуса                         |                       |                                      | красная ла                                                                  | акированная  | , RAL 3013   |             |        |
| Вес с резьбовым штуцером 4)                 |                       | <b>≈</b> KΓ                          | 2,2                                                                         | 2,5          | 4,2          | 17,3        | -      |
| Вес с фланцем PN 25                         |                       | <b>≈</b> KΓ                          | 3,8                                                                         | 4,5          | 7,5          | 20,3        | 41,0   |
| Мин. считываемое кол-во:                    |                       |                                      |                                                                             |              |              |             |        |
| Счетчик общего кол-ва                       |                       | Л                                    | без десяти                                                                  | ічного знака |              |             |        |
| Счетчик кол-ва со сбросом                   |                       | Л                                    | 1 десятич                                                                   |              |              |             |        |
| Индикация значения на                       |                       | л/час                                | 1 десятич                                                                   | ный знак     |              |             |        |
| данный момент                               |                       |                                      |                                                                             |              |              |             |        |
| Способность регистрации                     |                       | Л                                    | 100 000 0                                                                   | 000          |              |             |        |
| Длительность регистрации                    |                       |                                      |                                                                             |              |              |             |        |
| при Q <sub>n</sub> без перебега             |                       | Ч                                    | 128 000                                                                     | 100 000      | 50 000       | 16 667      | 5 000  |
| Выходы <sup>5)</sup>                        |                       | /                                    |                                                                             |              |              |             |        |
| Импульсы для тотализатора                   |                       | кол-во./<br>имп.                     | значение и ширина импульса параметрируются                                  |              |              |             |        |
| Ток 420 мА для расхода                      |                       | $I_4/Q_1, I_{20}/Q_2$                | Q <sub>2</sub> Расход для 4 и 20 мА параметрируется                         |              |              |             |        |
| Частота для расхода                         |                       | $f_1/Q_1, f_2/Q_2$                   | , f <sub>2</sub> /Q <sub>2</sub> Частота и величина расхода параметрируются |              |              |             |        |
| Переключатель предельных величин для лимита |                       | Q <sub>мин</sub> Qмакс               | Минимум                                                                     | , максимум   | и гистерезис | с параметри | руются |

<sup>1)</sup> Данные завода-изготовителя, действительны при соблюдении условий тестирования согласно «ПРИЛОЖЕНИЕ: данные счетчиков» 2) 1 галлон США соответствует 3,785 литра

#### Кривые потерь давления

См. «ПРИЛОЖЕНИЕ: данные счетчиков»

<sup>3)</sup> На горелках и двигателях счетчик настраивается, как правило, на длительный расход. При высокой вязкости или монтаже на стороне всасывания необходимо учитывать потери давления и возможно уменшенный диапазон измерений.

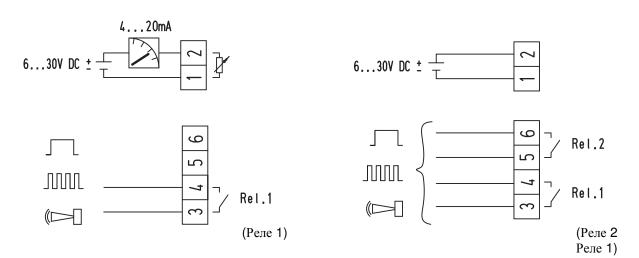
<sup>4)</sup> Вес без резьбовых соединений.

<sup>5)</sup> В распоряжении всегда имеются два независимых друг от друга входа.

### Электронная индикация

| 25 15 15 15 15 15 15 15 15 15 15 15 15 15 | Показания<br>индикации: | <ul> <li>Кол-во общее, сброс кол-ва, расход на данный момент</li> <li>В меню «Инфо» можно получить часы работы и другую информацию</li> </ul>                                                                 |  |  |  |
|-------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                           | Индикация:              | <ul> <li>8-значная индикация на ЖКД с указание параметров, высота цифр – 8 мм, расход н данный момент показан балкой</li> <li>Температура окружающ. среды -25+70° С Температура хранения -25+85° С</li> </ul> |  |  |  |
|                                           | Температура:            |                                                                                                                                                                                                               |  |  |  |
|                                           | Безопасность:           | • CE, испытания на вибрацию и удары согласн DIN IEC 68                                                                                                                                                        |  |  |  |
|                                           | Питание:                | • 24 в = тока (630 в = тока)                                                                                                                                                                                  |  |  |  |
|                                           | Получение данных:       | • От энергонезависимого запоминающего<br>устройства EEPROM                                                                                                                                                    |  |  |  |
|                                           | Вид защиты:             | <ul> <li>IP66 (IEC 60529) от напора воды и пыли</li> </ul>                                                                                                                                                    |  |  |  |

#### Выходы


Выходы имеют четыре различные функции:

- Импульсный датчик для взвешенных объемных импульсов (на тотализатор)
- Аналоговый сигнал 4...20 мА к значению расхода
- Аналоговый частотный сигнал 0...100 Гц к значению расхода
- Переключатель предельной величины для верхней и нижней величины расхода

Одновременно можно пользоваться двумя любыми функциями. Исключение: имеется только один выход питания.

В результате имеются два варианта подключения:

- 1 цифровой выход без потенциала (реле 1), свободно устанавливаемый на одну из трех названных функций.
- 1 пассивный аналоговый выход 4...20 мA, служит одновременно для питания счетчика.
- 2 цифровых выхода без потенциала (реле 1 + реле 2), свободно устанавливаемые на одну из трех названных функций.
- Здесь нет аналогового выхода. Но питание осуществляется через его клеммы.



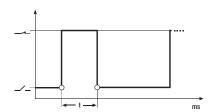
#### Технические характеристики выходов

#### Аналоговый выход (1-2)

Диапазон напряжения U: 6...30 в =

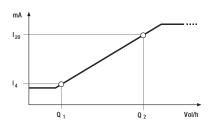
Нагрузка R<sub>L</sub>: (U-5) в / 0,0215A [Ω]

Точность показаний: 16 бит
 Макс. погрешность: ± 0,2 мА
 Интервал актуализации: < 1 сек.</li>


#### Цифровые выходы (3-4, 5-6)

Интервал актуализации:
 Макс. напряжение U<sub>макс</sub>:
 Макс. ток I<sub>макс</sub>:
 Вкл. – резистор R<sub>0</sub>:
 Выкл. – резистор R<sub>∞</sub>:
 Изоляционное напряжение:
 Макс. выходная частота f<sub>макс</sub>:
 100 Гц

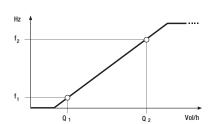
# Параметрируемые функции:


#### Объемные импульсы:

Ширина импульса t: 5, 50, 250, 500 мсек Значение импульса: параметрируемое

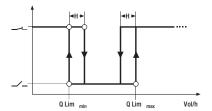


#### Сигнал тока


Расход при 4 мА Q<sub>1</sub>: параметрируемый
 Расход при 20 мА Q<sub>2</sub>: параметрируемый
 Величина затухания: параметрируемая



#### Частотный сигнал:

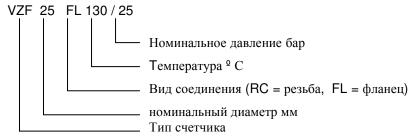

Соотношение импульсов: 1:1

Частота / расход  $f_1/Q_1$ : параметрируемые Частота / расход  $f_2/Q_2$ : параметрируемые



# Переключатель предельных величин (аварийный сигнал)

Лимит  $Q_{\text{мин}}$ : параметрируемый Лимит  $Q_{\text{макс}}$ : параметрируемый Гистерезис H: параметрируемый




# Размеры

| длина 165 165 190 300 350<br>ширина 105 105 130 210 280<br>высота 155 164 191 243 299 | Тип | MM     | VZF15 | VZF20 | VZF25 | VZF40 | VZF50 |
|---------------------------------------------------------------------------------------|-----|--------|-------|-------|-------|-------|-------|
|                                                                                       |     | ширина | 105   | 105   | 130   | 210   | 280   |

Подробные изображения в «ПРИЛОЖЕНИИ: Данные счетчиков»

### Типовой ключ



### Данные для заказа

| Резьбовое соединение PN 16 | Наименование типа <b>130°</b> С                                              | Арт. №                           |
|----------------------------|------------------------------------------------------------------------------|----------------------------------|
|                            | VZF 15 RC 130/16<br>VZF 20 RC 130/16<br>VZF 25 RC 130/16<br>VZF 40 RC 130/16 | 93705<br>93708<br>93725<br>93730 |

| Фланцевое соединение | Наименование типа 130 2С | Арт. № | Наименование типа <b>180</b> <sup>o</sup> C | Арт. № |
|----------------------|--------------------------|--------|---------------------------------------------|--------|
| PN 25                |                          |        |                                             |        |
| - ID=                | VZF 15 FL 130/25         | 93706  | VZF 15 FL 180/25                            |        |
| ln Hijin             | VZF 20 FL 130/25         | 93709  | VZF 20 FL 180/25                            | 93710  |
|                      | VZF 25 FL 130/25         | 93726  | VZF 25 FL 180/25                            | 93727  |
|                      | VZF 40 FL 130/25         | 93731  | VZF 40 FL 180/25                            | 93732  |
|                      | VZF 50 FL 130/25         | 93735  | VZF 50 FL 180/25                            | 93736  |

| Модификации VZF | Разрешение ведомств для применения на кораблях (напр., GL, | 96295 |
|-----------------|------------------------------------------------------------|-------|
|                 | LRS, DNV)                                                  |       |

# CONTOIL® Classic VZO 4...50

#### VZO 4 и 8

# **Технические характеристики** 1)



- Счетчик топлива с внутренней резьбой, расположение снизу
- С механическим роликовым счетным механизмом, индикация в л.
- Модели с индикатором в галлонах США 2)
- Для горизонтального, вертикального или наклонного монтажа
- VZOA 4 и 8 с испытанием Палаты мер и весов ЕС

Опция: герконовый импульсный датчик 48 в

| Тип                                         |        |         |                              |                                      | VZO 4         | VZO 4      | VZO 8                  |
|---------------------------------------------|--------|---------|------------------------------|--------------------------------------|---------------|------------|------------------------|
|                                             |        |         |                              |                                      | $Q_{MHH}.0,5$ |            |                        |
| Номинальный диаметр                         |        |         |                              | MM                                   | 4             | 4          | 8                      |
| Монтаж счетчика (внутренняя резы            | ба)    |         |                              | Дюйм                                 | 1/8           | 1/8        | 1/4                    |
| Номинальное давление                        |        |         |                              | бар                                  | 25            |            |                        |
| Макс. температура                           |        |         | Т макс.                      | º C                                  | 60            |            |                        |
| Макс. расход                                |        | ,       | макс.                        | л/ч                                  | 40            | 80         | 200                    |
| Длительный расход                           |        |         | $Q_n^{(3)}$                  | л/ч                                  | 25            | 50         | 135                    |
| Минимальный расход                          |        | (       | Q <sub>мин</sub>             | л/ч                                  | 0,5           | 1          | 4                      |
| Начало срабатывания прибл.                  |        |         |                              | л/ч                                  | 0,3           | 0,4        | 1,6                    |
| Макс. погрешность измерений                 |        |         |                              |                                      | ±1% от фа     | ктического | значения <sup>4)</sup> |
| Цикличность                                 |        |         |                              |                                      | ± 0,2%        |            |                        |
| Мин. считываемое кол-во                     |        |         |                              | л                                    | 0,001         | 0,001      | 0,01                   |
| Способность регистрации                     |        |         |                              | м <sup>3</sup>                       | 100           | 100        | 1000                   |
| Длительность регистрации при Q <sub>n</sub> | без пе | еребега |                              | час                                  | 4000          | 2000       | 7400                   |
| Размер ячейки сетки фильтра                 |        |         |                              | MM                                   | 0,125         | 0,125      | 0,150                  |
| Размер ячейки фильтра-грязеви               | са мак | c.      |                              | MM                                   | 0,080         | 0,080      | 0,100                  |
| Объем измерительной камеры                  |        |         |                              | <b>≈</b> c <sub>M</sub> <sup>3</sup> | 5             | 5          | 12,5                   |
| Вес без монтажных резьбовых соед            | цинени | ій      |                              | <b>≈</b> KΓ                          | 0,65          | 0,65       | 0,75                   |
| Герконовый импульсный датчик                | RE     | 1       |                              | л/импульс                            | -             | -          | 1                      |
|                                             | RE (   | 0,1     |                              |                                      | -             | 0,1        | 0,1                    |
|                                             | RE (   | 0,01    |                              |                                      | -             | 0,01       | -                      |
|                                             |        | 0,00125 |                              |                                      | -             | 0,00125    | -                      |
|                                             | RE (   | 0.00311 |                              |                                      | -             | -          | 0,00311                |
| Частота импульсов для                       | RE     | 0,00125 | при Q                        | Гц                                   | _             | 17,777     | -                      |
|                                             | 5)     |         | макс<br>при Q <sub>мин</sub> | Гц                                   | -             | 0,222      | -                      |
| Частота импульсов для                       | RE (   | 0,00311 | при Q                        | Гц                                   | -             | -          | 17,864                 |
|                                             | 5)     | •       | макс<br>при Q <sub>мин</sub> | Гц                                   | -             | -          | 0,357                  |
| 4\ m                                        |        |         |                              |                                      | TIDLLTON      |            |                        |

<sup>1)</sup> Данные завода-изготовителя, действительны при соблюдении условий тестирования согласно «ПРИЛОЖЕНИЕ: данные счетчиков»

<sup>2) 1</sup> галлон США соответствует 3,785 литра

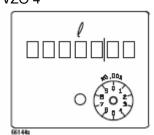
<sup>3)</sup> На горелках и двигателях счетчик настраивается, как правило, на длительный расход. При высокой вязкости или монтаже на всасывающей стороне необходимо учитывать потери давления и возможно измененный диапазон измерений.

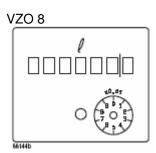
<sup>4)</sup> Макс. погрешность измерений: VZO 4 Q<sub>мин</sub> 0,5 л/ч...2 л/ч = + 1%/-2%, VZO 4: 1 л/ч...2 л/ч = + 1%/- 2%.

<sup>5)</sup> Необходимо учитывать и кратковременное включение.

VZOA 4 и 8 с разрешением / калибровочное испытание EC: D04 / 5.232.14

| Данные согласно условиям допуска |                   |                     | VZOA 4 | VZOA 8 |
|----------------------------------|-------------------|---------------------|--------|--------|
| Температура макс.                |                   | <sup>o</sup> C      | 50     | 50     |
| Максимальный расход              | Q <sub>макс</sub> | л/час               | 20     | 140    |
| Длительный расход                | $\mathbf{Q}_{n}$  | л/час               | 20     | 140    |
| Минимальный расход               | $Q_{\text{мин}}$  | л/час               | 2      | 14     |
| Макс. погрешность измерения      |                   | ± % от фактического | 0,5    | 0,3    |
| _                                |                   | значения            |        |        |

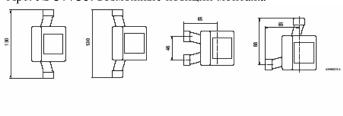

#### Кривые потери давления


См. «ПРИЛОЖЕНИЕ: Данные счетчиков»

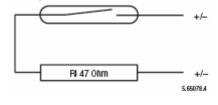
#### Размеры в мм











Подробные рисунки с размерами в «ПРИЛОЖЕНИИ: Данные счетчиков»

#### Монтажный комплект для VZO 8

Арт. № 81130: возможные позиции монтажа



#### Импульсный датчик RE



Элемент включения: Напряжение включения: Ток включения:

Ток покоя:

Время включения:

- Герконовые трубки с защитным контактом
- Maкc. 48 в ≈/=
- Макс. 50 мА
- Открытый контакт

VZO 4-RE 0,00125
 VZO 4-RE 0,01
 VZO 4-RE 1
 VZO 8-RE 0,00311
 VZO 8-RE 0,1
 VZO 8-RE 1
 VZO 8-RE 0,1
 VZO 8-RE 1
 30...70%
 30...70%

Температура:

Вид защиты:

Окружающая среда -10...+60<sup>o</sup> C

Приборы без импульсного датчика:

• IP 65 (IEC 60529) от напора воды и пыли

Приборы с импульсным датчиком RE:

- IP50 (IEC 60529) от отложений пыли
- Поставляемый штекер для кабеля  $2x0,35 \text{ мм}^2$

Подключение:

# Данные для заказа

|                   | Наименование типа          | Арт. № | Наименование типа | Арт. № |
|-------------------|----------------------------|--------|-------------------|--------|
|                   | VZO 4                      | 92680  | VZO 8             | 92630  |
| 1 1               | VZO 4 RE 0,00125           | 89763  | VZO 8 RE 0,00311  | 89733  |
|                   | VZO 4 RE 0,01              | 89760  | VZO 8 RE 0,1      | 89730  |
|                   | VZO 4 RE 0,1               | 89761  | VZO 8 RE 1        | 89731  |
|                   | VZO 4 Q <sub>мин</sub> 0,5 | 92678  |                   |        |
| y Carrier 900alte | VZOA 4                     | 93668  | VZOA 8            | 93669  |

# Особые модели с уплотнениями FPM из фтор-эластомера

VZO 4 V apt. № 92487 VZO 4 V RE 0,01 apt. № 92488 VZO 4 V RE 0,1 apt. № 92489

#### **VZO 4 и 8 ОЕМ**

# Технические характеристики 1)



- Счетчик жидкого топлива для изготовителей различного оборудования, с монтажом под колпаком горелки
- Счетчик с внутренним резьбовым соединением, расположенным сбоку
- С герконовым импульсным датчиком 230 в для индикации данных измерения на удаленном тотализаторе или на управлении горелки
- Для горизонтального, вертикального или наклонного монтажа

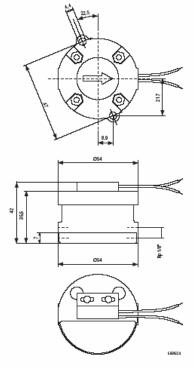
| Тип                                   |                                |                               | VZO 4<br>OEM | VZO 8<br>OEM |
|---------------------------------------|--------------------------------|-------------------------------|--------------|--------------|
| Номинальный диаметр                   |                                | MM                            | 4            | 8            |
|                                       |                                | дюйм                          | 1/8          | 1/4          |
| Монтаж счетчика (внутренняя резьба)   |                                | дюйм                          | 1/8          | 1/4          |
| Номинальное давление                  |                                | бар                           | 32           | 25           |
| Температура                           | Т макс.                        | º C                           | 60           | 60           |
| Макс. расход                          | Q 2)                           | л/ч                           | 80           | 200          |
| Длительный расход                     | $Q_n^{(2)}$                    | л/ч                           | 50           | 135          |
| Минимальный расход                    | Q <sub>мин</sub> <sup>3)</sup> | л/ч                           | 1            | 4            |
| Начало срабатывания прибл.            |                                | л/ч                           | 0,4          | 1,6          |
| Макс. погрешность измерения           |                                | ± 1% от ф                     | актическо    | го значения  |
| Цикличность                           |                                | 3)                            |              |              |
|                                       |                                |                               | ± 0,2%       |              |
| Размер ячейки сетки фильтра           |                                | MM                            | -            | 0,150        |
| Размер ячейки фильтра-грязевика макс. |                                | MM                            | 0,080        | 0,100        |
| Объем измерительной камеры            |                                | ≈ c <sub>M</sub> <sup>3</sup> | 5            | 12,5         |
| Bec                                   |                                | <b>≈</b> KΓ                   | 0,65         | 0,75         |
| Герконовый импульсный датчик RE       |                                | л/импульс                     | 0,05         | 0,0125       |
| Частота импульсов                     | при Q <sub>макс</sub>          | Гц                            | 4,444        | 4,444        |
|                                       | при Q <sub>мин</sub>           | Гц                            | 0,056        | 0,089        |

<sup>1)</sup> Данные завода-изготовителя, действительны при соблюдении условий тестирования согласно «ПРИЛОЖЕНИЕ: Данные счетчиков»

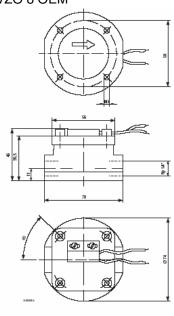
#### Указания по безопасности

При подключении герконового импульсного датчика к сети низкого напряжения рабочий-монтажник несет ответственность за соблюдение местных инструкций (напр., инструкция для электрического монтажа, безопасность человеческой жизни).

#### Кривые потери давления


См. «ПРИЛОЖЕНИЕ: Данные счетчиков»

<sup>2)</sup> На горелках счетчик настраивается, как правило, на длительный расход. При высокой вязкости или монтаже на стороне всасывания необходимо учитывать потери давления и возможное уменшение диапазона измерений.


<sup>3)</sup> Макс. погрешность измерения: VZO 4 ОЕМ: 1 л/ч...2 л/ч = + 1%/-2%.

#### Размеры в мм

#### VZO 4 OEM



#### VZO 8 OEM



# Импульсный датчик RE



Элемент включения:

Напряжение включения:

Ток включения:

Ток покоя:

Мощность включения:

Время включения:

Температура:

Вид защиты:

Подключение:

• Герконовые трубки с защитным контактом

• макс. 230 в ≈/=

• макс. 50 мА

• Открытый контакт

• макс. 3 вА

• 40 ... 55%

• Окружающая среда -10...+60° C

• IP 65 (IEC 60529) от напора воды и пыли

• Литца, диаметр 2 x 0,5 мм<sup>2</sup>, длина 480 мм

### Удаленный тотализатор к VZO 4 OEM



Питание:

Величина входного импульса:

Минимальный считываемый

объем:

Способность регистрации:

Длительность регистрации:

Проем лицевой панели:

Глубина монтажа:

• 230 в, 50/60 Гц

• 0,005 л

• 0,005 л

• 10 000л

• при Q<sub>n</sub> без перебега 200 час

• 27 x 14,4 x 0/+ 0,2 MM

• 56 mm

#### Данные для заказа

| Наименование типа       | Описание                                                                                           | Арт. №         |
|-------------------------|----------------------------------------------------------------------------------------------------|----------------|
| VZO 4 OEM-RE 0,005      | Модель для изготовителей различного оборудования<br>Удаленный тотализатор с входом 0,005 л/импульс | 89765<br>93349 |
| <br>VZO 8 OEM-RE 0,0125 | Модель для изготовителей различного оборудования                                                   | 89771          |

#### VZO 15 ... 50

# Технические характеристики 1)



- Счетчик жидкого топлива с индикацией общего объема на роликовом счетном механизме, единицы измерения литры
- Счетчик с резьбовым или фланцевым соединением
- Для горизонтального, вертикального или наклонного монтажа

Опция: с герконовым или индуктивным импульсным датчиком RV или IN

#### Модели по запросу:

- Другие отверстия для фланцев, напр., ANSI, JIS
- Модели с индикацией в галлонах США <sup>2)</sup> (опция)

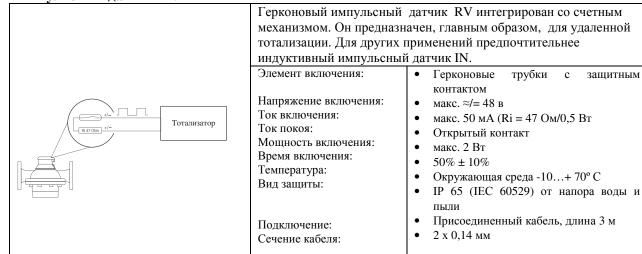
| Тип                                                      |                               | VZO15    | VZO 20      | VZO 25 | VZO 40 | VZO 50  |
|----------------------------------------------------------|-------------------------------|----------|-------------|--------|--------|---------|
| Номинальный диаметр DN                                   | мм                            | 15       | 20          | 25     | 40     | 50      |
| _                                                        | дюйм                          | 1/2      | 3/4         | 1      | 1 1/2  | 2       |
| Монтажная длина                                          | MM                            | 165      | 165         | 190    | 300    | 350     |
| Ном. давление с резьбой РМ                               | I бар                         | 16       |             |        |        |         |
| с фланцем РМ                                             |                               | 25,40    |             |        |        |         |
| Макс. температура Т ма                                   | кс. <sup>⁰</sup> С            | 130, 180 |             |        |        |         |
| Макс. расход Q                                           | л/ч                           | 600      | 1 500       | 3 000  | 9 000  | 30 000  |
| макс.                                                    | 3)                            |          |             |        |        |         |
| Длительный расход <b>Q</b> n                             | <sup>3)</sup> л/ч             | 400      | 1000        | 2000   | 6000   | 20000   |
| Минимальный расход Q <sub>м</sub>                        | ин л/ч                        | 10       | 30          | 75     | 225    | 750     |
| Начало срабатывания прибл.                               | л/ч                           | 4        | 12          | 30     | 90     | 300     |
| Макс.погрешность измерения ± 1% от фактического значения |                               |          |             |        |        |         |
| Цикличность                                              |                               | ± 0,2%   |             |        |        |         |
| Размер ячейки сетки фильтра                              | MM                            | 0,400    | 0,400       | 0,400  | 0,800  | 0,800   |
| Размер ячейки фильтра- мак                               | c. MM                         | 0,250    | 0,400       | 0,400  | 0,600  | 0,600   |
| грязевика                                                |                               |          |             |        |        |         |
| Объем измерительной                                      | ≈ c <sub>M</sub> <sup>3</sup> | 12       | 36          | 100    | 330    | 1200    |
| камеры                                                   |                               |          |             |        |        |         |
| Поверхность корпуса                                      |                               |          | акированная |        |        |         |
| Вес с резьбовым штуцером 4)                              | <b>≈</b> KΓ                   | 2,2      | 2,5         | 4,2    | 17,3   | -       |
| Вес с фланцем PN 25                                      | <b>≈</b> KΓ                   | 3,8      | 4,5         | 7,5    | 20,3   | 41,0    |
| Вес с фланцем PN 40                                      | <b>≈</b> KΓ                   | 4,4      | 5,5         | 7,8    | 20,5   | 42,0    |
| Мин. считываемый объем                                   | Л                             | 0,01     | 0,1         | 0,1    | 0,1    | 1       |
| Способность регистрации                                  | м <sup>3</sup>                | 1000     | 10 000      | 10 000 | 10 000 | 100 000 |
| Длительность регистрации                                 |                               |          |             |        |        |         |
| при Q <sub>n</sub> без перебега                          | час                           | 2500     | 10 000      | 5 000  | 1667   | 5 000   |
| Импульсы для удаленных                                   |                               |          |             |        |        |         |
| датчиков:                                                |                               |          |             |        |        |         |
| IN индуктивный (IEC 60947-5-6)                           | л/импульс                     | 0,01     | 0,01        | 0,1    | 0,1    | 1       |
| Герконовый RV                                            | л/импульс                     | 0,1      | 1           | 1      | 1      | 10      |
| Герконовый RV                                            | л/импульс                     | 1        | -           | -      | 10     | 100     |
| Частота импульсов IN при Q <sub>маі</sub>                |                               | 16,667   | 41,667      | 8,333  | 25,000 | 8,333   |
| при Q <sub>ми</sub>                                      |                               | 0,278    | 0,833       | 0,208  | 0,625  | 0,208   |

<sup>1)</sup> Данные завода-изготовителя, действительны при соблюдении условий тестирования согласно «ПРИЛОЖЕНИЕ: данные счетчиков»

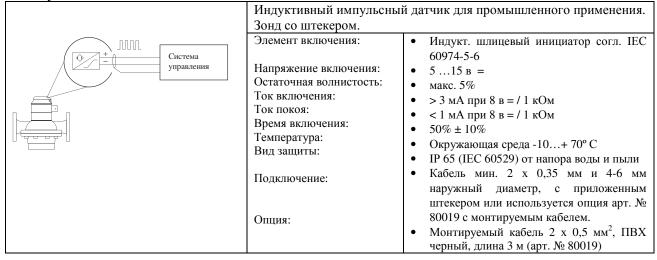
#### Кривые потерь давления

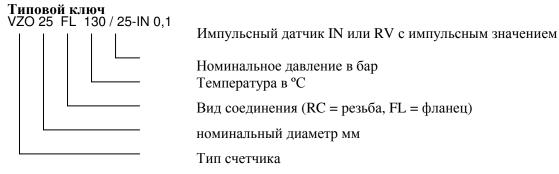
См. «ПРИЛОЖЕНИЕ: Данные счетчиков»

<sup>2) 1</sup> галлон США соответствует 3,785 литра


<sup>3)</sup> На горелках и двигателях счетчик настраивается, как правило, на длительный расход. При высокой вязкости или монтаже на стороне всасывания необходимо учитывать потери давления и возможное уменьшение диапазона измерений.

<sup>4)</sup> Вес без резьбовых соединений.


| Тип     | MM          | VZO 15 | VZO 20 | <b>VZO 25</b> | <b>VZO 40</b> | VZO 50 |
|---------|-------------|--------|--------|---------------|---------------|--------|
|         | длина       | 165    | 165    | 190           | 300           | 350    |
|         | ширина      | 105    | 105    | 130           | 210           | 280    |
|         | Тип 130 °C  |        |        |               |               |        |
|         | высота      | 106    | 115    | 142           | 235           | 291    |
| _ ( ) _ | высота –RV  | 130    | 139    | 166           | 259           | 315    |
|         | высота – IN | 185    | 194    | 221           | 273           | 329    |
| T 3     | Тип 180° С  |        |        |               |               |        |
| L DN4   | высота      | 147    | 156    | 183           | 235           | 291    |
|         | высота -RV  | 171    | 180    | 207           | 259           | 315    |
|         | высота – IN | 225    | 234    | 261           | 313           | 369    |


Подробные рисунки в «Приложении: Данные счетчиков»

Импульсный датчик RV



Импульсный датчик IN





защитным

# Данные для заказа

| Резьбовое соединение PN16 | Наименование типа <b>130°</b> С | Арт. № | Наименование типа <b>130°</b> С | Арт. № |
|---------------------------|---------------------------------|--------|---------------------------------|--------|
|                           | VZO 15 RC 130/16                | 92041  | VZO 25 RC 130/16                | 92057  |
| √ 5                       | VZO 15 RC 130/16-RV 0,1         | 92042  | VZO 25 RC 130/16-RV 1           | 92058  |
| 7 7 1                     | VZO 15 RC 130/16-RV 1           | 92043  | VZO 25 RC 130/16-IN 0,1         | 91913  |
| <u> </u>                  | VZO 15 RC 130/16-IN 0,01        | 91900  |                                 |        |
| <u> </u>                  | VZO 20 RC 130/16                | 92047  | VZO 40 RC 130/16                | 92004  |
| ) i                       | VZO 20 RC 130/16-RV 1           | 92048  | VZO 40 RC 130/16-RV 1           | 92018  |
| •                         | VZO 20 RC 130/16-IN 0,01        | 91902  | VZO 40 RC 130/16-RV 0,01        | 91906  |
|                           |                                 |        |                                 |        |

| Фланцевое соединение PN25 | Наименование типа <b>130°</b> С | Арт. № | Наименование типа <b>130°</b> С | Арт. № |
|---------------------------|---------------------------------|--------|---------------------------------|--------|
|                           | VZO 15 FL 130/25                | 92044  | VZO 40 FL 130/25                | 92005  |
|                           | VZO 15 FL 130/25-RV 0,1         | 92045  | VZO 40 FL 130/25 RV 1           | 92020  |
|                           | VZO 15 FL 130/25-RV 1           | 92046  | VZO 40 FL 130/25-IN 0,1         | 91907  |
|                           | VZO 15 RC 130/16-IN 0,01        | 91910  |                                 |        |
|                           | VZO 20 FL 130/25                | 92049  | VZO 50 FL 130/25                | 92007  |
|                           | VZO 20 FL 130/25-RV 1           | 92050  | VZO 50 FL 130/25- RV 10         | 92024  |
| S86                       | VZO 20 FL 130/25-IN 0,01        | 91903  | VZO 50 FL 130/25- IN 0,1        | 91909  |
|                           | VZO 25 FL 130/25                | 92059  |                                 |        |
|                           | VZO 25 FL 130/25- RV 1          | 92060  |                                 |        |
|                           | VZO 25 FL 130/25-IN 0,1         | 91914  |                                 |        |

| Фланцевое соединение PN25 | Наименование типа 180° С | Арт. № | Наименование типа <b>180°</b> С | Арт. № |
|---------------------------|--------------------------|--------|---------------------------------|--------|
|                           | VZO 15 FL 180/25         | 92250  | VZO 40 FL 180/25                | 92274  |
|                           | VZO 15 FL 180/25-RV 0,1  | 92251  | VZO 40 FL 180/25 RV 1           | 92275  |
| 1                         | VZO 15 FL 180/25-RV 1    | 92252  | VZO 40 FL 180/25-IN 0,1         | 92276  |
|                           | VZO 15 RC 180/25-IN 0,01 | 92253  |                                 |        |
|                           | VZO 20 FL 180/25         | 92258  | VZO 50 FL 180/25                | 92280  |
|                           | VZO 20 FL 180/25-RV 1    | 92259  | VZO 50 FL 180/25- RV 10         | 92024  |
|                           | VZO 20 FL 180/25-IN 0,01 | 92260  | VZO 50 FL 180/25- IN 1          | 91909  |
|                           | VZO 25 FL 180/25         | 92264  |                                 |        |
|                           | VZO 25 FL 180/25- RV 1   | 92265  |                                 |        |
|                           | VZO 25 FL 180/25-IN 0,1  | 92266  |                                 |        |

| Фланцевое соединение PN40 | Наименование типа <b>180°</b> С | Арт. № | Наименование типа <b>180°</b> С | Арт. № |
|---------------------------|---------------------------------|--------|---------------------------------|--------|
|                           | VZO 15 FL 180/40                | 92254  | VZO 40 FL 180/40                | 92277  |
|                           | VZO 15 FL 180/40-RV 0,1         | 92255  | VZO 40 FL 180/40 RV 1           | 92278  |
|                           | VZO 15 FL 180/40-RV 1           | 92256  | VZO 40 FL 180/40-IN 0,1         | 92279  |
|                           | VZO 15 FL 180/40-IN 0,01        | 92257  |                                 |        |
| [                         | VZO 20 FL 180/40                | 92261  | VZO 50 FL 180/40                | 92283  |
|                           | VZO 20 FL 180/40-RV 1           | 92262  | VZO 50 FL 180/40- RV 10         | 92284  |
| 984                       | VZO 20 FL 180/40-IN 0,01        | 92263  | VZO 50 FL 180/40- IN 1          | 92285  |
|                           | VZO 25 FL 180/40                | 92267  |                                 |        |
|                           | VZO 25 FL 180/40- RV 1          | 92268  |                                 |        |
|                           | VZO 25 FL 180/40-IN 0,1         | 92269  |                                 |        |

DN 15 только, если установка имеет грязеуловитель с макс. шириной ячеек 0,1 мм.

| Модификации VZO        | Разрешение для применения на кораблях (напр., B. GL, LRS, DNV) | 96295 |
|------------------------|----------------------------------------------------------------|-------|
| Опция / Принадлежности | Кабель смонтирован (на импульсном датчике IN)                  | 80019 |

# CONTOIL® VZFA/VZOA 15...50, Модели для специального применения

Для применений, требующих повышенного класса точности от  $\pm 0.5\%$  или выше, как, например, для:

- Измерения расхода жидкого топлива EL или дизельного топлива на измерительных стендах
- Дифференциальные измерения
- Расчетные операции, где законом предписаны счетчики разрешенных моделей или с калибровкой.

В принципе, следует обращать внимание на то, что для таких моделей требуются фильтры более тонкой очистки от грязи.

Модели для дифференциальных измерений

При проведении дифференциальных измерений измеряется количество протекающего вперед и назад топлива. Разность между обеими величинами измерений рассматривается как расход.

Для оптимального результата измерений применяются исключительно счетчики CONTOIL® VZFA или VZOA, калиброванные парами и точно настроенные на рабочие условия установки. При истолковании в каждом счетчике следует учитывать количество проходящего потока, допустимая потеря давления и вязкость измеряемого вещества. Нагрузка счетчиков определятся следующим образом: Поток вперед за минусом расхода = поток назад.

При составлении заказа требуются следующие данные:

Применение напр., дифференциальные измерения дизельных моторов группы

аварийного снабжения

Измеряемое вещество напр., дизельное топливо Температура

напр., 15 ... 40° С напр., 4 бара Рабочее давление

Поток вперед напр., пост. мощность насоса 200 л/час

Поток назад напр., 120 ... 190 л/час (при расходе 10 ... 80 л/час)

При калибровке и заключительном контроле на заводе-поставщике счетчики маркируются словами «поток вперед» и «поток назад». Монтаж должен производиться на соответствующих трубопроводах.

Дополнительную информацию по теме дифференциальных измерений можно получить в Приложении «Как добиться оптимального измерения и удаленной передачи?» и в «Примерах применения».

Модели с ведомственными разрешениями или калибровкой Счетчики жидкого топлива CONTOIL® используются почти исключительно для измерения расхода. Метрологические нормы (как, например, МІD или Инструкция ЕС 71/319/ЕЭС) регулируют в свою очередь требования к счетчикам и установкам для расчетных операций, а также для получения разрешения на модели и их калибровки. К нуждающимся в калибровке относятся измерительные приборы, через которые продается жидкое топливо. Примерами этого являются заправочные колонки АЗС, измерительные установки на дорожных заправочных машинах, измерительные установки для погрузки и разгрузки транспортных средств любого типа. Установка для расчетных операций, доставленная на место уже в рабочем состоянии, должна, как правило, еще раз быть предварительно проверенной местным калибровочным бюро и опломбированной.

Типичным для этого вида применения является узкая область использования касательно измеряемого вещества, количества его потока и температуры. При соблюдении ограничений, указанных в полученных сертификатах, счетчики топлива CONTOIL поставляются также с метрологическими сертификатами или справками о калибровке. Приборы отличаются друг от друга исключительно только формой или же спецификациями, а не своим качеством.

# **Технические характеристики**1)



- Модели для получения оптимальных результатов при дифференциальных измерениях или для расчетных операций, требующих калибровки (опция)
- VZFA с электронной индикацией общего количества, количество сбрасывается, и моментальным значением потока, единицы измерения: литры, м<sup>3</sup> или галлоны США
- VZOA с индикацией общего количества на роликовом счетном механизме, единицы измерения: литры. Опция с индикацией в галлонах США
- Опция VZOA с герконовым или индуктивным импульсным датчиком RV или IN
- С фланцевым или резьбовым соединением
- Для горизонтального или вертикального монтажа. Калиброванные счетчикитолько горизонтально
- VZFA: Удобный ввод параметров при помощи меню, а также интеграция в любое управление или любую систему.

#### Модели по запросу:

• Другие отверстия фланцев, например, ANSI, JIS

| Типы                                                |                       | VZFA       | / VZOA        |                                |               |         |
|-----------------------------------------------------|-----------------------|------------|---------------|--------------------------------|---------------|---------|
| Номинальный диаметр DN                              | MM                    | 15         | 20            | 25                             | 40            | 50      |
|                                                     | дюйм                  | 1/2        | 3/4           | 1                              | 1 ½           | 2       |
| Монтажная длина                                     | MM                    | 165        | 165           | 190                            | 300           | 350     |
| Ном. давление с резьбой PN                          | бар                   | 16         |               |                                |               |         |
| с фланцем PN                                        | бар                   | 25         |               |                                |               |         |
| Макс. температура Т мак                             | ° C                   | 130, 180   |               |                                |               |         |
| Макс. расход Q 3                                    | л/час                 | 600        | 1 500         | 3 000                          | 9 000         | 30 000  |
|                                                     |                       |            |               |                                |               |         |
| Длительный расход $Q_n^{3}$                         | л/час                 | 400        | 1000          | 2000                           | 6000          | 20000   |
| Минимальный расход Q мин                            |                       | 10         | 30            | 75                             | 225           | 750     |
| Начало срабатывания прибл.                          | л/час                 | 4          | 12            | 30                             | 90            | 300     |
| Макс. ошибка измерений                              | N                     | меньше чем | ± 0,5 % от фа | ктического зн                  | ачения        |         |
| Цикличность                                         |                       |            | ± 0,1%        |                                |               |         |
| Размер ячейки сетки фильтра                         | MM                    | 0,400      | 0,400         | 0,400                          | 0,800         | 0,800   |
| Размер ячейки грязеуловителя макс.                  | MM                    | 0,100      | 0,100         | 0,250                          | 0,250         | 0,250   |
| Объем измерительной камеры                          | $\approx cm^3$        | 12         | 36            | 100                            | 330           | 1200    |
| Поверхность корпуса                                 |                       | красн      | ая лакированн | ıая, RAL 3013                  | 3             |         |
| Вес с резьбовым штуцером 4)                         | ≈ кг                  | 2,2        | 2,5           | 4,2                            | 17,3          | -       |
| Вес с фланцем PN 25                                 | $\approx K\Gamma$     | 3,8        | 4,5           | 7,5                            | 20,3          | 41,0    |
| VZFA Мин. считываемое кол-во: Счетчик общего кол-ва | л                     |            | бе            | з десятичного                  | э знака       |         |
| Сбрасываем. счетчик кол-ва                          | л                     |            | 0.77          | ин знак после                  | ээнджэй       |         |
| Указание кол-ва в наст. время                       | л/час                 |            |               | ин знак после<br>ин знак после |               |         |
| Способность регистрации                             | л/час                 | 100 000 0  | , ,           | ін знак после                  | запятои       |         |
| Длительность регистрации                            | JI                    | 100 000 (  | 700           |                                |               |         |
| при Q <sub>n</sub> без перебега                     | час                   | 128 000    | 100 000       | 50 000                         | 16 667        | 5 000   |
| Выходы 5)                                           | iuc                   | 120 000    | 100 000       | 20 000                         | 10 007        | 3 000   |
| Импульсы для тотализатора                           | объем/имп.            | Значение   | е и ширина им | пульса парам                   | етрируются    |         |
| Ток 420 мА для потока                               | $l_4/Q_1, l_{20}/Q_2$ |            | потока для 4  |                                |               | Ī       |
| Частота для потока                                  | $f_1/Q_1, f_2/Q_2$    |            | и значение по |                                | 1 12          |         |
| Лимитирующий переключатель                          | $Q_{min}$ , $Q_{max}$ |            | м, максимум і |                                |               | этся    |
| VZOA                                                | Cilini/ Ciliax        |            | , J-1         |                                | 1 · · · F FJ- |         |
| Мин. считываемое кол-во                             | Л                     | 0.01       | 0,1           | 0,1                            | 0.1           | 1       |
| Способность регистрации                             | $\mathbf{M}^3$        | 1000       | 10 000        | 10 000                         | 10 000        | 100 000 |
| Длительность регистрации при                        | час                   | 2 500      | 10 000        | 5 000                          | 1667          | 5 000   |
| Q <sub>n</sub> без перебега                         |                       |            |               |                                |               |         |
| Значения импульсов удаленных датчиков               | :                     |            |               |                                |               |         |
| IN индуктивный (IEC 60947-5-6)                      | л/имп.                | 0,01       | 0,01          | 0,1                            | 0,1           | 1       |
| Герконовый RV                                       | л/имп.                | 0,1        | 1             | 1                              | 1             | 10      |
| Герконовый RV                                       | л/имп.                | 1          | -             | -                              | 10            | 100     |

- 1) Данные завода-изготовителя, действительны при соблюдении условий тестирования согл. «ПРИЛОЖЕНИЮ: Данные счетчиков»
- 2) 1 галлон США соответствует 3,785 литров
- 3) Для горелок и двигателей счетчик настраивается, как правило, на длительное прохождение жидкости. При высокой вязкости или монтаже на стороне всасывания необходимо учитывать потери давления или возможное уменшение диапазона измерений.
- 4) Вес без резьбовых соединений.
- 5) Всегда имеются 2 любых входа, независимых один от другого.

Технические характеристики для VZOA с допуском PTB / 04.37 класс 1

|                    | 4 =            |                                                        |                                                                             |                                                                                                          |                                                                                                                         |
|--------------------|----------------|--------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                    | 15             | 20                                                     | 25                                                                          | 40                                                                                                       | 50                                                                                                                      |
| ° C                | 130            | 130                                                    | 130                                                                         | 130                                                                                                      | 130                                                                                                                     |
| <sup>)</sup> л/час | 400            | 1000                                                   | 2000                                                                        | 6000                                                                                                     | 20000                                                                                                                   |
| л/час              | 400            | 1000                                                   | 2000                                                                        | 6000                                                                                                     | 20000                                                                                                                   |
| л/час              | 40             | 100                                                    | 200                                                                         | 600                                                                                                      | 2000                                                                                                                    |
|                    | 1              | 1                                                      | 1                                                                           | 1                                                                                                        | 1                                                                                                                       |
|                    | 0,5            | 0,5                                                    | 0,5                                                                         | 0,5                                                                                                      | 0,5                                                                                                                     |
|                    | л/час<br>л/час | л/час 400<br>л/час 400<br>л/час 400<br>1<br>еского 0,5 | л/час 400 1000<br>л/час 400 1000<br>л/час 40 100<br>1 1 1<br>еского 0,5 0,5 | л/час 400 1000 2000 л/час 400 1000 2000 л/час 40 100 2000 л/час 40 100 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | л/час 400 1000 2000 6000 л/час 400 1000 2000 6000 л/час 40 100 200 6000 л/час 40 10 10 10 10 10 10 10 10 10 10 10 10 10 |

Технические характеристики для VZOA с допуском/калибровкой EC: D 04 / 5.232.14

| Тип                          |                                        |       | VZOA | VZOA | VZOA | VZOA | VZOA  |
|------------------------------|----------------------------------------|-------|------|------|------|------|-------|
|                              |                                        |       | 15   | 20   | 25   | 40   | 50    |
| Температура макс.            | Т макс.                                | ° C   | 50   | 50   | 50   | 50   | 50    |
| Максимальный поток           | Q Make. 1)                             | л/час | 400  | 1000 | 2000 | 6000 | 20000 |
| Длительный поток             | $Q_n^{(1)}$                            | л/час | 400  | 1000 | 2000 | 6000 | 20000 |
| Минимальный поток            | $Q_{\scriptscriptstyle \mathrm{MWH.}}$ | л/час | 40   | 100  | 200  | 600  | 2000  |
| Класс точности соответствует | ± % ot                                 |       | 0,5  | 0,5  | 0,5  | 0,5  | 0,5   |
| макс. погрешности измерений  | фактичес<br>значения                   |       | 0,3  | 0,3  | 0,3  | 0,3  | 0,3   |

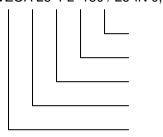
При заказе требуются две позиции: счетчик VZOA плюс калибровка EC арт. № 96026.

1) Для горелок и двигателей счетчик настраивается, как правило, на длительное прохождение жидкости. При высокой вязкости или монтаже на стороне всасывания необходимо учитывать потери давления или возможное уменшение диапазона измерений.

Электронная индикация и выходы: см. стр. 6 Импульсные датчики RV и IN: см. стр. 15

Кривые потерь давления: См. «ПРИЛОЖЕНИЕ: Данные счетчиков»

Размеры VZFA


| Тип      | MM     | VZFA 15 | VZFA 20 | VZFA 25 | VZFA 40 | VZFA 50 |
|----------|--------|---------|---------|---------|---------|---------|
| J# -  D= | Длина  | 165     | 165     | 190     | 300     | 350     |
|          | Ширина | 105     | 105     | 130     | 210     | 280     |
|          | Высота | 155     | 164     | 191     | 243     | 299     |
|          |        |         |         |         |         |         |

Размеры VZOA

| Тип | MM         | VZOA 15 | VZOA 20 | VZOA 25 | VZOA 40 | VZOA 50 |
|-----|------------|---------|---------|---------|---------|---------|
|     | Длина      | 165     | 165     | 190     | 300     | 350     |
|     | Ширина     | 105     | 105     | 130     | 210     | 280     |
|     | Тип 130° ( | C       |         |         |         |         |
|     | Высота     | 106     | 115     | 142     | 235     | 291     |
| 7   | Высота -RV | 130     | 139     | 166     | 259     | 315     |
|     | Высота -IN | 185     | 194     | 221     | 273     | 329     |
|     | Тип 180° ( | C       |         |         |         |         |
|     | Высота     | 147     | 156     | 183     | 235     | 291     |
| W   | Высота -RV | 171     | 180     | 207     | 259     | 315     |
|     | Высота -IN | 225     | 234     | 261     | 313     | 369     |

Подробные рисунки с размерами в «ПРИЛОЖЕНИИ: Данные счетчиков»

Типовой ключ VZOA 25 FL 130 / 25-IN 0,1



Импульсный датчик IN или RV с импульсным значением Номинальное давление в бар

Температура в °С

Вид соединения (RC = резьба, FL = фланец)

номинальный диаметр мм

Тип счетчика

#### Необходимые для заказа данные

При заказе требуются данные рабочих условий установки (согл. рекомендации в начале этой главы). Обратите, пожалуйста, внимание на то, что при расчетных операциях требующих калибровки используются исключительно только счетчики VZOA.

#### Пример дифференциального измерения:

Применение: дифференциальное измерение дизеля, макс. 50° С / 2 бар, подача 200 л/час,

возврат 120 ... 190 л/час

2 штуки арт. № 93758 Счетчик топлива CONTOIL <sup>®</sup>, тип VZFA 20 RC 130/16 2 штуки арт. № 96112 Модификация для дифференциальных измерений

#### Пример для расчетных операций

Применение: расчетные операции в Германии, измеряемое вещество жидкое топливо EL,

поток 200...400 л/час, температура прибл. 20 °C

1 штука арт. № 92290 Счетчик топлива CONTOIL ®, VZOA 20 RC 130/16

1 штука арт. № 96026 Модификация для калибровочных испытаний ЕС.

#### Пример для счетчиков без особой подгонки:

Применение: измерение дизельного топлива на измерительном стенде,

поток 200...400 л/час, температура прибл. 20...50 °C

1 штука арт. № 93758 Счетчик топлива CONTOIL ®, тип VZFA 20 RC 130/16

# Данные для заказа VZFA (счетчики с электронным счетным механизмом и программируемыми выходами)

| Резьбовое соединение PN16 | Название типа 130 °C | Арт. № |
|---------------------------|----------------------|--------|
|                           | VZFA 15 RC 130/16    | 93755  |
|                           | VZFA 20 RC 130/16    | 93758  |
|                           | VZFA 25 RC 130/16    | 93763  |
|                           | VZFA 40 RC 130/16    | 93768  |

| Фланцевое соединение<br>PN25                      | Название типа 130 °C | Арт. № | Название типа <b>180</b> °C | Арт. № |
|---------------------------------------------------|----------------------|--------|-----------------------------|--------|
|                                                   | VZFA 15 FL 130/25    | 93756  | VZFA 15 FL 180/25           | 93757  |
| <b>—</b>                                          | VZFA 20 FL 130/25    | 93759  | VZFA 20 FL 180/25           | 93760  |
| η <del>                                    </del> | VZFA 25 FL 130/25    | 93764  | VZFA 25 FL 180/25           | 93765  |
|                                                   | VZFA 40 FL 130/25    | 93769  | VZFA 40 FL 180/25           | 93770  |
| n——n                                              | VZFA 50 FL 130/25    | 93773  | VZFA 50 FL 180/25           | 93774  |

| Модификации VZFA | Для дифференциальных измерений                              | 96112 |
|------------------|-------------------------------------------------------------|-------|
| -                | Разрешение для применения на кораблях (напр., GL, LRS, DNV) | 96295 |

# Данные для заказа VZOA (счетчик с роликовым счетным механизмом)

| Резьбовое соединение PN16 | Название типа 130 °C      | Арт. № | Название типа 130 °C     | Арт. № |
|---------------------------|---------------------------|--------|--------------------------|--------|
|                           | VZOA 15 RC 130/16         | 92286  | VZOA 25 RC 130/16        | 92293  |
| ✓ 🖺                       | VZOA 15 RC 130/16-RV-0,1  | 92287  | VZOA 25 RC 130/16-RV 1   | 92294  |
| 7 7                       | VZOA 15 RC 130/16-RV 1    | 92288  | VZOA 25 RC 130/16-IN 0,1 | 92295  |
| <u> </u>                  | VZOA 15 RC 130/16-IN 0,01 | 92289  |                          |        |
|                           | VZOA 20 RC 130/16         | 92290  | VZOA 40 RC 130/16        | 92296  |
| 200                       | VZOA 20 RC 130/16-RV 1    | 92291  | VZOA 40 RC 130/16-RV 1   | 92297  |
|                           | VZOA 20 RC 130/16-IN 0,01 | 92292  | VZOA 40 RC 130/16-IN 0,1 | 92298  |
|                           |                           |        |                          |        |

| Фланцевое соединение PN25 | Название типа 130 °C      | Арт. № | Название типа 130 °C     | Арт. № |
|---------------------------|---------------------------|--------|--------------------------|--------|
|                           | VZOA 15 FL 130/25         | 92299  | VZOA 40 FL 130/25        | 92309  |
|                           | VZOA 15 FL 130/25-RV 0,1  | 92300  | VZOA 40 FL 130/25-RV 1   | 92310  |
|                           | VZOA 15 FL 130/25-RV 1    | 92301  | VZOA 40 FL 130/25-IN 0,1 | 92311  |
|                           | VZOA 15 FL 130/25-IN 0,01 | 92302  |                          |        |
|                           | VZOA 20 FL 130/25         | 92303  | VZOA 50 FL 130/25        | 92312  |
|                           | VZOA 20 FL 130/25-RV 1    | 92304  | VZOA 50 FL 130/25-RV 10  | 92313  |
|                           | VZOA 20 FL 130/25-IN 0,01 | 92305  | VZOA 50 FL 130/25-IN 1   | 92314  |
|                           | VZOA 25 FL 130/25         | 92306  |                          |        |
|                           | VZOA 25 FL 130/25-RV 1    | 92307  |                          |        |
|                           | VZOA 25 FL 130/25-IN 0,1  | 92308  |                          |        |

| Фланцевое соединение PN25 | Название типа <b>180 °C</b> | Арт. № | Название типа <b>180</b> °C | Арт. № |
|---------------------------|-----------------------------|--------|-----------------------------|--------|
|                           | VZOA 15 FL 180/25           | 92315  | VZOA 40 FL 180/25           | 92325  |
|                           | VZOA 15 FL 180/25-RV 0,1    | 92316  | VZOA 40 FL 180/25-RV 1      | 92326  |
|                           | VZOA 15 FL 180/25-RV 1      | 92317  | VZOA 40 FL 180/25-IN 1      | 92327  |
|                           | VZOA 15 FL 180/25-IN 0,01   | 92318  |                             |        |
| 1 1 1 1                   | VZOA 20 FL 180/25           | 92319  | VZOA 50 FL 180/25           | 92328  |
|                           | VZOA 20 FL 180/25-RV 1      | 92320  | VZOA 50 FL 180/25-RV 10     | 92329  |
|                           | VZOA 20 FL 180/25-IN 0,01   | 92321  | VZOA 50 FL 180/25-IN 1      | 92330  |
| 999                       | VZOA 25 FL 180/25           | 92322  |                             |        |
|                           | VZOA 25 FL 180/25-RV 1      | 92323  |                             |        |
|                           | VZOA 25 FL 180/25-IN 0,1    | 92324  |                             |        |

| Модификации VZOA     | Для дифференциальных измерений                                 | 96112 |
|----------------------|----------------------------------------------------------------|-------|
|                      | Разрешение для применения на кораблях (напр., B, GL, LRS, DNV) | 96295 |
|                      | с калибровочным испытанием ЕС                                  | 96026 |
| Опция/Принадлежности | Кабель смонтирован (на импульсном датчике IN)                  | 80019 |

# Принадлежности

# Данные для заказа принадлежностей

|                      | Наименование типа  | Описание                     | Арт. № |
|----------------------|--------------------|------------------------------|--------|
| Резьбовые соединения | VSR ½ "            | к DN 15                      | 81160  |
| n 🗆 n                | VSR ¾ " x ½ "      | к DN 20                      | 81163  |
|                      | VSR 3/4 "          | к DN 20                      | 81166  |
|                      | VSR 1"             | к DN 25                      | 81169  |
|                      | VSR 1 ½ "          | к DN 40                      | 81181  |
| Резьбовой набор      | Набор VSR VZO 4    | 1/8" - 8                     | 81583  |
|                      |                    |                              |        |
| Монтажный набор      | Набор PS для VZO 8 | Резьбовое соединение,        | 81130  |
|                      | VSR 3/8"           | подходящее к набору PS VZO 8 | 81156  |

|                       | Наименование типа                | Описание                                                      | Арт. №         |
|-----------------------|----------------------------------|---------------------------------------------------------------|----------------|
| Удаленный тотализатор | Импульсный датчик                | Импульсный датчик со сбросом данных и без<br>устанавливаемый  | 93374          |
| Прерыватели           | Прерыватель Ех<br>Прерыватель Ех | с выходом реле макс. 10 Гц с электронным выходом, макс. 5 кГц | 81705<br>80013 |

|                               | Наименование типа                  | Описание                                                                                                     | Арт. № |
|-------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------|--------|
| Измерительный преобразователь | Счетчик потока                     | свободно программируемый, с аналоговым выходом 420 мА, индикация моментального значения, предельные величины | 92439  |
| 000                           | Дифференциальный<br>счетчик потока | свободно программируемый, с аналоговым выходом 420 мА, индикация моментального значения. Оба входа отдельные | 92440  |
|                               | Частотный преобразователь тока     | свободно программируемый                                                                                     | 92439  |
| Монтажные принадлежности      | Монтажный набор                    | для монтажа на стенке или на шине DIN 35 мм                                                                  | 80082  |

# Данные счетчиков

#### Принцип работы

 $^{\circ}$  Счетчики жидкого топлива  $^{\circ}$  СОNTOIL $^{\circ}$  работают по волюметрическому принципу кольцевого поршневого счетчика.

Особенностью данного принципа измерения является большой диапазон измерений, их высокая точность, независимость от вязкости измеряемого вещества и от электропитания, а также нечувствительно к профилю потока.









#### Конструкция

В жидкости находятся в виде подвижных частей только кольцевой поршень, направляющий ролик и захват (электромагнитная муфта). Гидравлическая часть полностью отделена от индикатора и импульсного датчика. Передача данных из герметически закрытой измерительной камеры осуществляется при помощи электромагнитной муфты.

#### **VZF/VZFA 15...50**

Подключение производится радиально двумя вводами кабелей на нижней стороне индикационного блока, крепится поворотом на 90°

#### VZO и VZOA 15...50

Для оптимального считывания розетка устройства (роликовый счетный механизм) может поворачиваться на 360°. (Исключение: счетчики с герконовым импульсным датчиком RV)

#### VZO/VZOA 4 и 8

Входные и выходные соединения расположены вертикально в нижнейчасти счетчика. При модели ОЕМ подключения расположены сбоку.





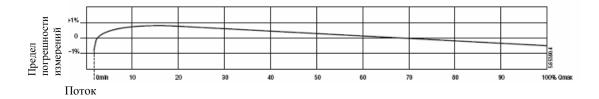


#### Пределы погрешности измерений / базовые условия

Пределы погрешности измерений согласно данным в технических условиях, в процентах от фактической величины.

#### Базовые условия

Измеряемое вещество:


испытательное топливо подобное жидкому топливу EL, плотность при 20 °C = 814 кг/м<sup>3</sup>

вязкость =  $5.0 \text{ мм}^2$ /сек по DIN 51757 / ISO 3104 (соответствует 4,1 мПа)

Температура: 18 ... 25 °C

Горизонтальный монтаж, индикация на счетном механизме.

Счетчики жидкого топлива CONTOIL® нельзя проверять водой. Измерительный механизм от этого портится.

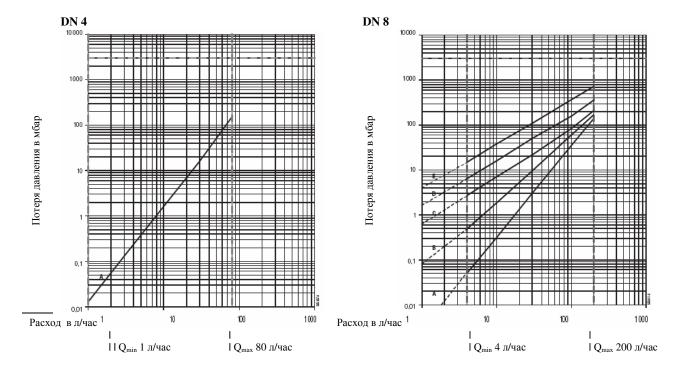


#### Кривые потери давления

#### Данные вязкости

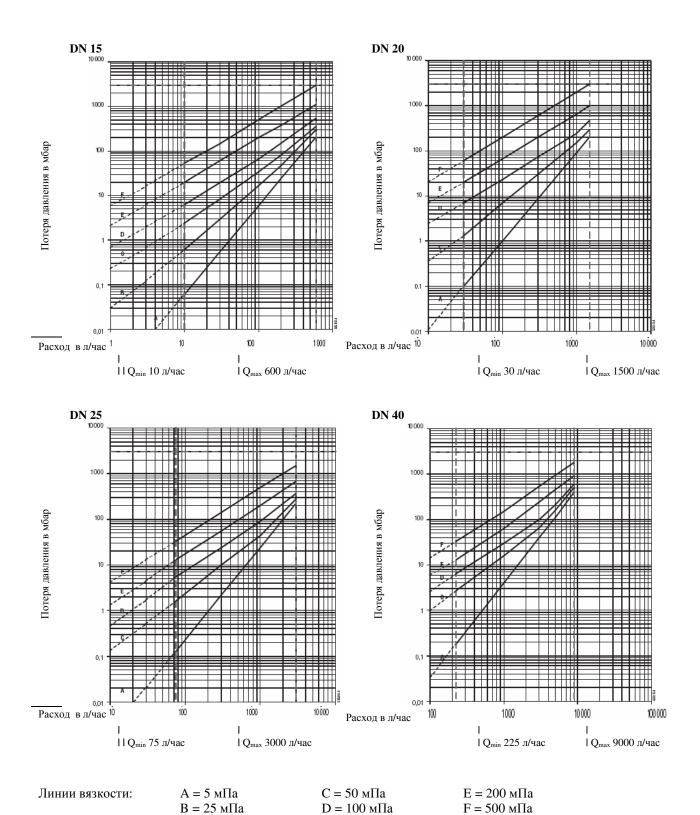
Кинематическая вязкость Стокс, санти-стокс, мм²/сек Ст., сСт., мм²/сек

Динамическая вязкость Паскальсекунды, Па, мПа

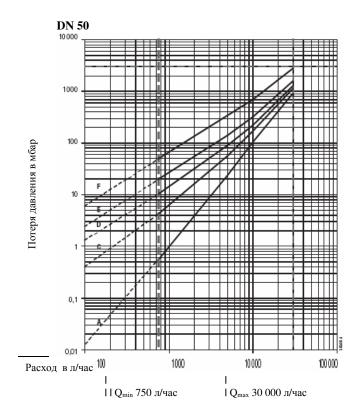

миллипаскальсекунды

Пуаз, сантипуаз (устаревш.) П, сП

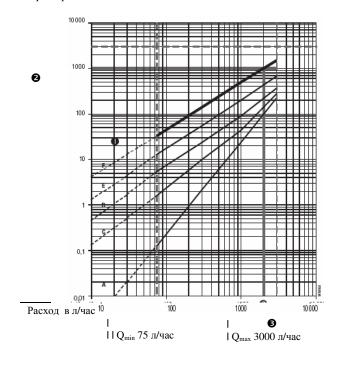
Пересчет  ${
m cCt} \ {
m x} \ {
m плотность} = {
m m} \Pi {
m a}$ 


градусы Энглера °E в мПа: только через проверочную таблицу единицы Сейболта в мПа: только через проверочную таблицу единицы Редвуда в мПа: только через проверочную таблицу

Эмпирическая формула 1 сСт.  $\rightarrow 1 \text{ мм}^2/\text{сек } \rightarrow 1 \text{ м} \Pi \text{a}$ 




Линии вязкости:  $A = 5 \text{ м}\Pi a$   $C = 100 \text{ м}\Pi a$   $E = 500 \text{ м}\Pi a$   $D = 200 \text{ м}\Pi a$ 


При потере давления более 1 бар рекомендуется следующий по величине внутренний диаметр счетчика. Максимально допустимая потеря давления = 3 бара.



При потере давления более 1 бар рекомендуется следующий по величине внутренний диаметр счетчика. Максимально допустимая потеря давления = 3 бара.

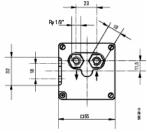


#### Пример:

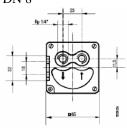


Измеряемое вещество жидкое топливо, вязкость 450 мПа Монтаж VZO на напорной стороне

- $oldsymbol{\Phi}$  Линии вязкости DN25 Выбрать самую близко лежащую линию:  $F = 500 \ \mathrm{m\Pi a}$
- Ә Предположение для допустимой потери давления в установке = 1 бар
- ❸ На точке пересечения линии F и потерей давления 1 бар внизу получаем возможный поток в кол-ве 2000 л/час

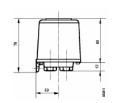

| Материалы                   |                          |   | Внутр | енний | ний диаметр счетчика |    |    |    |  |  |
|-----------------------------|--------------------------|---|-------|-------|----------------------|----|----|----|--|--|
| Деталь                      | Материал                 | 4 | 8     | 15    | 20                   | 25 | 40 | 50 |  |  |
| Корпус / мерная часть       | латунь                   | • | •     |       |                      |    |    |    |  |  |
| Корпус с резьбовым штуцером | латунное литье           |   |       | •     | •                    | •  |    |    |  |  |
|                             | сферическое литье        |   |       |       |                      |    | •  |    |  |  |
| Корпус с фланцем            | сферическое литье        |   |       | •     | •                    | •  | •  | •  |  |  |
| Измерительная камера        |                          |   |       |       |                      |    |    |    |  |  |
| - PN 16 /25                 | латунное литье           |   |       | •     | •                    | •  | •  |    |  |  |
|                             | красное литье            |   |       |       |                      |    |    | •  |  |  |
| - PN 40                     | специальная сталь        |   |       | •     | •                    | •  | •  | •  |  |  |
| Уплотнения                  | NBR бутадиен-акрилнитрил | • |       |       |                      |    |    |    |  |  |
|                             | FPM фтор-эластомер       | S | •     | •     | •                    | •  | •  | •  |  |  |
| Кольцевой поршень           | анодированный алюминий   | • | •     | •     | •                    | •  | •  | •  |  |  |
| дополнительные насадки      | пластмасса               |   |       | •     | •                    | •  | •  | •  |  |  |
| Колпак счетчика             | пластмасса               | • | •     |       |                      |    |    |    |  |  |

S = специальное изготовление

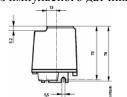

# Размеры в мм

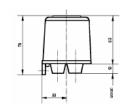
# VZO/VZOA 4 и 8

DN 4

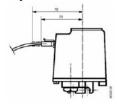


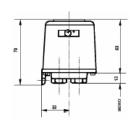

DN 8



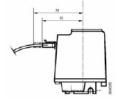


без импульсного датчика

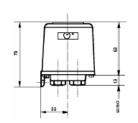
23





без импульсного датчика



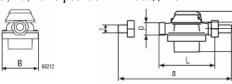




с импульсным датчиком

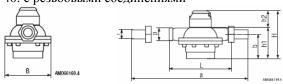




с импульсным датчиком

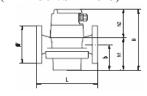






# Размеры в мм

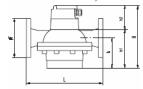
# Все измерительные датчики (VZF / VZFA, VZO / VZOA)

DN 15, 20, 25: с резьбовыми соединениями




DN 40: с резьбовыми соединениями




DN 15, 20, 25: с фланцами (DIN 2501/SN 21843)

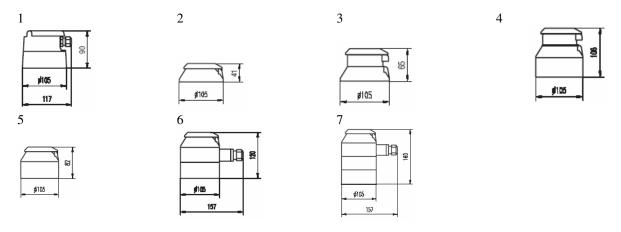




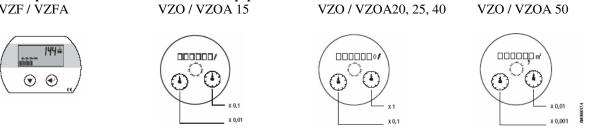
DN 40, 50: с фланцами (DIN 2501/SN 21843)






| Внутренний диаметр счетчика | L   | В   | a   | Ø F | b   | h1  | р     | r     |
|-----------------------------|-----|-----|-----|-----|-----|-----|-------|-------|
| DN 15                       | 165 | 105 | 260 | 95  | 45  | 65  | G ¾ " | G ½ " |
| DN 20                       | 165 | 105 | 260 | 105 | 54  | 74  | G 1"  | G ¾ " |
| DN 25                       | 190 | 130 | 305 | 115 | 77  | 101 | G ¼ " | G 1 " |
| DN 40                       | 300 | 210 | 440 | 150 | 116 | 153 | G 2"  | G ½ " |
| DN 50                       | 350 | 280 | -   | 165 | 166 | 209 | -     | -     |

66213a


# Размеры монтажных групп / измерительные преобразователи

| Сенсор             | VZF / VZFA | VZO 15 - 25 |    |       |   |       |    | <b>VZO 40 – 50 / VZOA 15 – 50</b> |    |       |   |    | 0  |
|--------------------|------------|-------------|----|-------|---|-------|----|-----------------------------------|----|-------|---|----|----|
| Макс. температура  | 130/180°C  | 130°C       |    | 180°C |   | 130°C |    |                                   |    | 180°C |   |    |    |
| Импульсный датчик  | все        | -           | RV | IN    | - | RV    | IN | -                                 | RV | IN    | - | RV | IN |
| Чертеж с размерами | 1          | 2           | 3  | 4     | 5 | 4     | 7  | 5                                 | 4  | 6     | 5 | 4  | 7  |

# VZF(A), VZO(A) Чертежи с размерами 1-7 согласно выбору в таблице



#### Электронные счетные механизмы / циферблаты VZF / VZFA



Выбор правильного измерительного прибора

| Типы счетчиков              |                               | VZF   | VZO  | VZO   | VZFA       | VZOA | VZOA  |
|-----------------------------|-------------------------------|-------|------|-------|------------|------|-------|
|                             |                               | 15-50 | 4-8  | 15-50 | 15-50      | 4-8  | 15-50 |
| Применение                  |                               |       |      |       |            |      | _     |
| Прямое измерение расхода    |                               |       | •    | •     | •          | •    | •     |
| Дифференциальное измерен    |                               | -     | -    | -     | •          | -    | •     |
| Измерительные приборы с м   | иетрол. Допусками /           | -     | -    | -     | -          | •    | •     |
| калибровкой (опция)         |                               |       |      |       |            |      | _     |
|                             | порскими допусками (опция)    | •     | -    | •     | •          | -    | •     |
| Наиболее частые области     |                               |       |      |       |            |      |       |
| Бытов./промышл. горелки     | легкое/среднее топливо        | •     | •    | •     | •          | •    | •     |
|                             | тяжелое топливо <sup>1)</sup> | •     | -    | •     | •          | -    | •     |
| Дизельные двигатели         | с дизельным топливом          | •     | •    | •     | •          | •    | •     |
| Корабельные двигатели       | с тяжелым топливом 1)         | •     | - 2) | •     | •          | -    | •     |
| Бензиновые двигатели        |                               |       | 2)   |       |            | -    |       |
| Наиболее частые области     | применения                    |       |      |       |            |      |       |
| В отопительных установках   |                               | •     | •    | •     |            |      |       |
| На кораблях                 |                               | •     |      | •     | •          |      | •     |
| На дизельных локомотивах    |                               | •     | •    | •     | •          |      | •     |
| На грузовиках / автобусах / | строительных машинах          |       | •    | •     |            |      | •     |
| Измеряемые вещества         | •                             |       |      |       |            |      |       |
| Легкое жидкое топливо       |                               | •     | •    | •     | •          | •    | •     |
| Среднее жидкое топливо      |                               | •     | •    | •     | •          |      | •     |
| Тяжелое жидкое топливо      |                               |       | -    | •     | •          | -    | •     |
| Дизельное горючее           |                               |       | •    | •     | •          | •    | •     |
| Бензин <sup>2)</sup>        |                               |       | 2)   |       |            |      |       |
| Индикация измеряемых во     | еличин                        |       |      |       |            |      |       |
| Количество общее            |                               | •     | •    | •     | •          | •    | •     |
| Сброс количества            |                               | •     | _    | _     | •          | -    | -     |
| Моментальное значение пот   | гока                          | •     | _    | _     | •          | -    | -     |
| Вид индикации               |                               |       |      |       |            |      |       |
| Электронная индикация ЖК    | :л                            | •     | _    | _     | •          | _    | _     |
| Механическая индикация ро   |                               | -     | •    | •     | _          | •    | •     |
| Предел погрешностей изм     |                               |       |      |       |            |      |       |
| ± 1% от измеряемой величи   |                               | •     | •    | •     | l <u>-</u> | DN 4 | _     |
| ± 0,5% от измеряемой велич  |                               | _     | _    | _     | •          | DN 8 | •     |
| Допуск РТВ                  | класс 1                       | _     | _    | _     | •          | •    | •     |
| Допуск ЕС / с калибровоч-   |                               | _     | -    | _     | _          | DN 4 | _     |
| ным испытанием              |                               | _     | -    | _     | _          | DN 8 | •     |
| Выходы 3)                   | /-                            |       | 1    |       |            |      |       |
| Выход тока                  | 420 мА                        | •     | _    | _     | •          | _    | _     |
| Цифровые выходы             | объемные импульсы             | •     | 1_   | _     | •          | _    | _     |
|                             | частотный сигнал              | •     | 1_   | _     | •          | _    | _     |
|                             | предел мин./макс.             | •     | 1_   |       | •          | l _  | _     |
| Импульсный датчик (опці     | •                             |       | 1    |       |            | _    |       |
| тычы улосноги датчик (ОПЦ)  | in,                           | 1     | 1    |       | 1          | 1    | 1     |
| Индуктивный                 |                               | -     | _    |       | -          | _    |       |

• пригоден О в стадии разработки (пожалуйста, запросить) - не пригоден

| - не пригоден                |      |      |       |       |       |       |       |
|------------------------------|------|------|-------|-------|-------|-------|-------|
| Измеряемая среда и пригодные | DN 4 | DN 8 | DN 15 | DN 20 | DN 25 | DN 40 | DN 50 |
| внутр. диаметры счетчиков    |      |      |       |       |       |       |       |
| Жидкое топливо легкое        | •    | •    | •     | •     | •     | •     | •     |
| Жидкое топливо среднее       | •    | •    | •     | •     | •     | •     | •     |
| Жидкое топливо тяжелое 1)    | -    | -    | •     | •     | •     | •     | •     |
| Дизельное топливо            | •    | •    | •     | •     | •     | •     | •     |
| Бензин <sup>2)</sup>         | •    | •    |       |       |       |       | Ì     |

- 1) С учетом максимального размера ячеек грязеуловителя согл. техническим данным 2) Условия использования согласуются с заводом-изготовителем (другие величины измерений).
- 3) независимо друг от друга всегда имеются 2 выхода

#### Примеры применения

При высокой вязкости или монтаже на стороне всасывания следует учитывать потери давления и возможное сокращение диапазона измерений.

# Измеряемое вещество нефтепродукт

Свойства нефтепродуктов (горючих веществ)

| Жидкое топливо         |       |                    | Экстралегкое | Легкое | Среднее | Тяжелое | Бункер С |
|------------------------|-------|--------------------|--------------|--------|---------|---------|----------|
| Плотность при 15° С    | мин.  | кг/дм <sup>3</sup> | 0,82         | 0,82   | 0,82    | 0,82    | 0,90     |
|                        | макс. | кг/дм <sup>3</sup> | 0,86         | 0,95   | 0,96    | 0,99    | 1,01     |
| Объем при средн. плоти | ности | л/кг               | 1,19         | 1,12   | 1,12    | 1,11    | 1,08     |
| Вязкость при 20° С     |       | мПа.сек            | 8            | 14     | 50      | 420     | 4200     |
| 40° C                  |       | мПа.сек            | 3            | 5      | 16      | 60      | 380      |
| 100° C                 |       | мПа.сек            | -            | -      | 3       | 10      | 35       |
| Величина энергии       |       | кВт/час/кг         | 11,8         | 10,6   | 11,4    | 11,2    | 11,0     |

# Ориентировочные величины мощности горелок / двигателей

Горелки

| Горелки              | Топливные счетчики        |        |                                                                                   |             |  |  |
|----------------------|---------------------------|--------|-----------------------------------------------------------------------------------|-------------|--|--|
| Мощность             | Пропускная способность EL |        | Пропускная                                                                        | Номинальный |  |  |
| $\approx \kappa B_T$ | кг/час                    | л/час  | способность                                                                       | диаметр DN  |  |  |
|                      |                           |        | $Q_{\scriptscriptstyle{\mathrm{MUH}}}$ $Q_{\scriptscriptstyle{\mathrm{n}}}$ л/час |             |  |  |
| 500                  | 42                        | 50     | 1 50                                                                              | 4           |  |  |
| 1 300                | 113                       | 135    | 4135                                                                              | 8           |  |  |
| 4 000                | 336                       | 400    | 10400                                                                             | 15          |  |  |
| 10 000               | 840                       | 1 000  | 301 000                                                                           | 20          |  |  |
| 20 000               | 1 680                     | 2 000  | 752 000                                                                           | 25          |  |  |
| 60 000               | 5 040                     | 6 000  | 2256 000                                                                          | 40          |  |  |
| 200 000              | 16 800                    | 20 000 | 75020 000                                                                         | 50          |  |  |

Упрощённая формула расхода в литрах/час Пример:

| мощность горелки в кВт                            | 4000 кВт                     |                           |
|---------------------------------------------------|------------------------------|---------------------------|
|                                                   |                              | = 4000: 9,912 = 403  л/ча |
| величина энергии в кВтчас/кг х плотность в кг/дм3 | 11,8 кВтчас/кг х 0,84 кг/дм3 |                           |

### Двигатели

| Двигатель |        | Счетчик 1)     |                                     |             |  |  |
|-----------|--------|----------------|-------------------------------------|-------------|--|--|
| Мощность  |        | Расход топлива |                                     | Номинальный |  |  |
| ≈ л.с.    | ≈ кВт  | ≈ кВт л/час    |                                     | диаметр DN  |  |  |
|           |        |                | $Q_{\text{мин}} Q_{\text{n}}$ л/час |             |  |  |
| 250       | 184    | 50             | 150                                 | 4           |  |  |
| 680       | 500    | 135            | 4135                                | 8           |  |  |
| 2 000     | 1 470  | 400            | 10400                               | 15          |  |  |
| 5 000     | 3 680  | 1 000          | 301 000                             | 20          |  |  |
| 10 000    | 7 360  | 2 000          | 752 000                             | 25          |  |  |
| 30 000    | 22 000 | 6 000          | 2256 000                            | 40          |  |  |
| 100 000   | 73 600 | 20 000         | 75020 000                           | 50          |  |  |

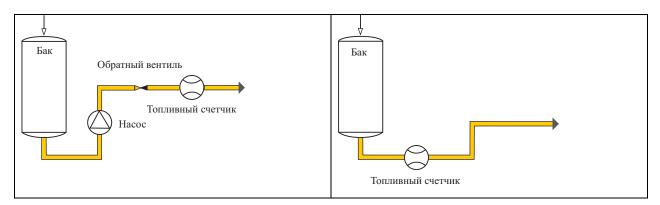
<sup>1)</sup> При дифференциальном измерении размер счетчика определяется в зависимости от мощности насоса и количества возврата

Пересчет: 1 DIN- л.с. = 0,736 кВт 1 кг солярки к 0,84 кг/дм<sup>3</sup> = 1,19 л 1 кВт = 1,36 DIN-л.с.

Упрощенная формула для расхода:  $\approx 190\ \Gamma$  солярки / кВт/час соответствуют 0,226 л/час/кВт  $\approx 140\ \Gamma$  солярки / л.с. соответствуют 0,167 л/час/л.с.

# Как получить оптимальные измерения и удаленную оценку

#### Планирование установки


Расходомеры – прецизионные измерительные приборы. Они дают оптимальные результаты, если

- при планировании установки учитываются несколько важных правил,
- правильно проводится монтаж и сдача в эксплуатацию,
- приборы используются только для предназначенной цели.

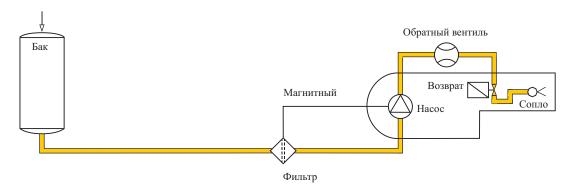
#### Подводка трубопроводов

Измерительный прибор должен быть подключен ко всем потребителям.

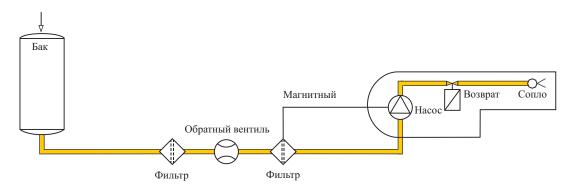
- Счетчики с кольцевым поршнем CONTOIL® могут использоваться без прямых участков входа и выхода топлива, (например, после колена трубы, т-образных участков и арматуры) в горизонтальном, вертикальном или наклонном положении. По возможности не рекомендуется монтировать измерительный прибор с считывающей головкой вниз.
- При прокладке трубопроводов следует учитывать, чтобы измерительный прибор при работе был в любое время заполнен жидкостью и чтобы в ней не было никаких включений воздуха или газа. При сдаче в эксплуатацию из них полностью удаляется воздух. Не монтировать измерительные приборы в высшей точке установки.
- Необходимо обращать внимание на доступность для считывания и обслуживания измерительных и дополнительных приборов.



#### Определение параметров измерительного прибора и принадлежностей


При определении параметров измерительного прибора следует учитывать:

- рабочую температуру
- вязкость измеряемого вещества
- рабочее давление
- область протекания
- стойкость материала к измеряемому веществу и окружающим условиям.


Технические данные рассчитаны на работу с жидким топливом EL / соляркой при 20° С. При более высокой вязкости или монтаже на стороне всасывания необходимо рассчитать потери давления и возможный проток измеряемого вещества. (Пример на стр. 24).

Если потеря давления превышает 1 бар, рекомендуется применение счетчика со следующим по величине номинальным диаметром. Максимальная допустимая потеря давления составляет 3 бара.

### Монтаж на стороне нагнетания, (например, горелки)



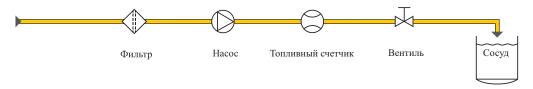
### Монтаж на стороне всасывания, (например, горелки)



### Загрязнения в установке или в жидкости

Если в установке или в измеряемом веществе имеются загрязнения, то перед измерительным прибором необходимо поставить грязевой фильтр/предварительный фильтр. Встроенный на входе в счетчик фильтр является чисто предохранительным фильтром. Он слишком маленький, чтобы работать как грязевой фильтр.

| Макс. ширина ячеек предварит. фильтра | Счетчик | VZF      | VZO      | VZFA/VZOA |
|---------------------------------------|---------|----------|----------|-----------|
|                                       | DN 4    | -        | 0,080 мм | 0,080 мм  |
|                                       | DN 8    | -        | 0,100 мм | 0,100 мм  |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | DN 15   | 0,250 мм | 0,250 мм | 0,100 мм  |
|                                       | DN 20   | 0,400 мм | 0,400 мм | 0,100 мм  |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | DN 25   | 0,400 мм | 0,400 мм | 0,250 мм  |
|                                       | DN 40   | 0,600 мм | 0,600 мм | 0,250 мм  |
| <b>*</b>                              | DN 50   | 0,600 мм | 0,600 мм | 0,250 мм  |


#### Запорные элементы

Запорные элементы монтируются после измерительного прибора, чтобы предотвратить обратный поток и опустошение. Все это приводит к погрешностям при измерениях и возможному повреждению измерительного прибора.



#### Наполнение / дозировки

Для наполнения и дозировки вентиль устанавливается между измерительным прибором и выходом потока. Короткий трубопровод от вентиля до выхода позволяет получить наивысшую точность измерения. Следует избегать быстрого открывания и закрывания вентиля (из-за ударов давления).

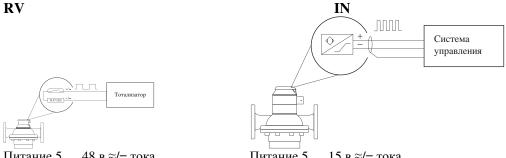


#### Удаленная оценка/дополнительные приборы

При измерительных приборах с импульсными датчиками для дистанционной индикации следует избегать возникновение любых обратных потоков. Если конструкция установки не обеспечивает этого, необходимо установить обратный клапан.

#### Электрическая проводка

Прокладка электрической проводки производится по законодательным предписаниям, которые необходимо учитывать при планировании установки. При монтаже во взрывоопасных зонах следует привлекать эксперта-взрывника.


При планировании установки следует учитывать:

- последующие подключенные дополнительные приборы
- связанные с окружающей средой источники помех
- максимальную длину кабеля (возм. с усилителем)
- прокладка кабеля/распределительные розетки.

#### Импульсные датчики IN и RV

#### Питание импульсных датчиков

Для дистанционного съема информации о расходе используются пассивные импульсные датчики. Импульсный датчик получает питание от последующего подключенного прибора. Датчик дает по одному импульсу на единицу объема.



Питание 5 ... 48 в ≈/= тока

Питание 5 ... 15 в ≈/= тока

#### Выбор правильного импульсного датчика

Выбор правильного импульсного датчика, а также наиболее благоприятного значения импульса осуществляется в зависимости от желательной дистанционной оценки. Для дистанционной тотализации выбираются большие величины импульсов, для определения величины в данный момент, аналогового сигнала и управления наполнением - наоборот малые значения. При оценочных приборах, работающих от батарейного питания, используются только герконовые импульсные датчики.

#### Расчет параметров управляемых приборов

Длительность импульса зависит от потока. При нулевом потоке может возникнуть длительный контакт. Поэтому подключенный прибор должен выдерживать длительную нагрузку, в противном случае необходимо предусмотреть защитные элементы, как, например, реле с проскальзывающими контактами. Для удаленного обобщения данных рекомендуется применение электронного импульсного счетчика с незначительным потреблением тока и буферным фильтром.

#### Правильное определение импульсов

При непрерывном потоке в некоторых установках могут появиться колебания жидкости (гидравлическая вибрация с незначительным движением вперед и назад). В этих случаях могут образовываться импульсы, которые будут восприниматься последующим прибором как движение вперед. Это не мешает определению моментальной величины потока. Но если импульсный счетчик управляет функцией счета, необходимо при помощи соответствующих мер предотвратить эти гидравлические вибрации в установке.

#### Значения импульсов

Они зависят от типа и номинального диаметра счетчика. Значения импульсов указываются на счетчиках.

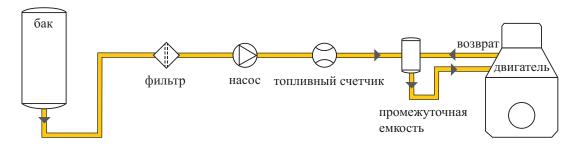
#### Длительность импульса



Длительность импульса, а также длительность включения и выключения рассчитываются по следующим формулам:

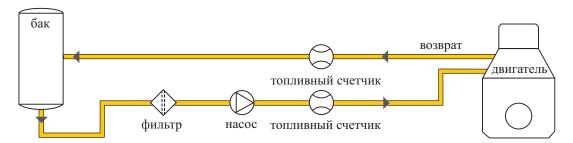
Значение импульса в л х 3600 Период импульса в сек. Поток Q в л/час период импульса в сек х время включения в % Время включения

Время выключения = Период импульса в сек. минус время включения


Рекомендуется расчитывать ожидаемый минимальный и максимальный поток в установке.

# Примеры применения

#### Дизельные двигатели


## Прямое измерение расхода

Вместо возврата горючего в бак со стороны установки встраивается промежуточная емкость с теплообменником. Измерение потока производится в трубе, ведущей к промежуточной емкости. Нагрузка счетчика и результаты измерений точно соответствуют расходу.

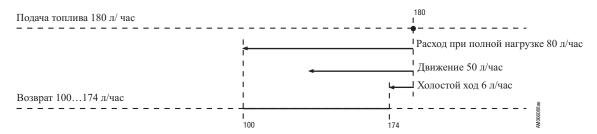


#### Дифференциальные измерения

При дифференциальном измерении циркуляция топлива с его возвратом в бак остается без изменений. Прибор для измерения потока монтируется в обоих трубопроводах. Расход определяется как разность между количеством подачи топлива вперед и назад. Нагрузки счетчика соответствуют, таким образом, количеству подачи и возврата топлива.



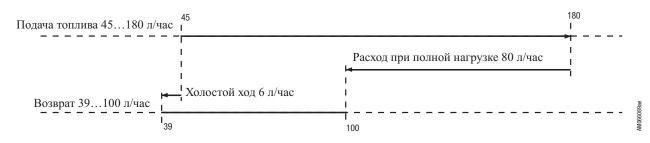
#### Почему для дифференциальных измерений применяются специальные счетчики


Стандартные счетчики имеют большую область и макс. погрешность измерения в размере ± 1%. Поэтому они не идеальны для дифференциальных измерений, как показывают следующие ниже примеры:

| Полная нагрузка      | Подача 400 л/час<br>Возврат 150 л/час         | погрешность измерения $\pm$ 1% = номинал $\pm$ 4,0 л погрешность измерения $\pm$ 1% = номинал $\pm$ 1,5 л   |
|----------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                      | Расход 250 л/час                              | погрешность измерения макс. номинал ± 5,5 л                                                                 |
|                      | Максимальная возмо расходе = $5.5 \times 100$ | ожная погрешность измерения при $: 250 = \pm 2,2\%$ .                                                       |
| Минимальная нагрузка | Подача 400 л/час<br>Возврат 360 л/час         | погрешность измерения $\pm 1\%$ = номинал $\pm 4,0$ л погрешность измерения $\pm 1\%$ = номинал $\pm 3,6$ л |
|                      | Расход 40 л/час                               | погрешность измерения макс. номинал ± 7,6 л                                                                 |
|                      | Максимальная возмо<br>расходе = 7,6 х 100     | ожная погрешность измерения при $: 40 = \pm 19\%$ .                                                         |

Поэтому для получения оптимального результата при дифференциальном измерении применяются специальные счетчики, точно согласованные с рабочими условиями и калиброванные парами. Так удается значительно уменьшить погрешность измерений (например, Подача при постоянном потоке до  $\pm$  0,1%, возврат при слегка изменяющемся потоке до  $\pm$  0,3%).

### Определение нагрузок счетчика

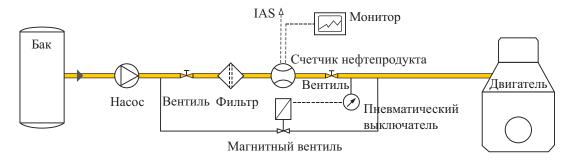

Пример: дизельный двигатель 500 л.с. с электрическим насосом



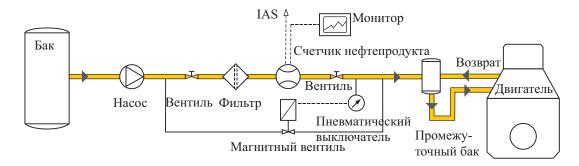
Эффективные длительные нагрузки счетчика

Подача вперед постоянная 180 л/час Возврат 100 ... 174 л/час

Пример: дизельный двигатель 500 л.с. с мембранным насосом зависимым от числа оборотов 1:4

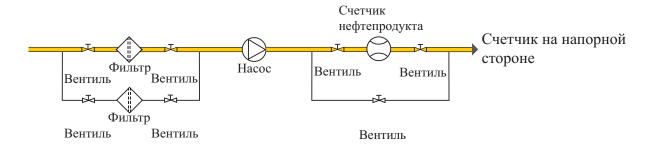


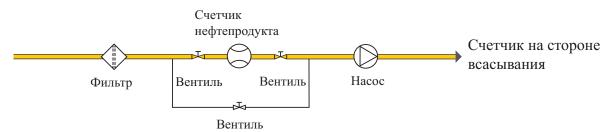

Эффективные длительные нагрузки счетчика


Подача вперед  $45 \dots 180$  л/час Возврат  $39 \dots 100$  л/час

#### Измерение расхода топлива на кораблях

На кораблях необходимо обращать внимание на то, чтобы двигатель продолжал работать с полной мощностью при сильном загрязнении фильтра или поврежденном счетчике. При переключении на байпас сигнал сирены указывает на необходимость обслуживания, а двигатель какое-то время работает без измерения расхода.





Перепускной клапан (Магнитный клапан) открывается, если давление падает ниже установленной величины.



В промежуточном баке управление поплавками или клапанами. Следует избегать образование газа. Перепускной клапан (магнитный клапан) открывается, когда давление падает ниже установленного значения. Если двигателей несколько, для каждого из них требуется своя полная установка.

#### Монтаж на стороне всасывания насоса





Если счетчик устанавливается на стороне всасывания насоса необходимо учитывать максимальную потерю давления при максимально допустимом потоке и возможной максимальной вязкости топлива. При этом следует также учитывать и установленные фильтры.

